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Double diffusive convection in a vertical enclosure inserted
with two saturated porous layers confining a fluid layer
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Abstract

Thermosolutal natural convection in an enclosure filled with fluid and inserted with isotropic or anisotropic porous layers is analyzed
numerically. Identical porous layers are attached to the vertical walls, and the walls are held at constant temperatures and concentrations.
The horizontal walls of the enclosure are assumed to be adiabatic and impermeable. The aspect ratio of the cavity is equal to two and the
saturating fluid is air (Pr = 0.71). The analysis is performed for thermal Grashof numbers 106 and 107, Schmidt number of 7.1 and for
different Darcy number, porous layer thickness and permeability ratio. The results are presented for thermally driven flow,N = 0, and for
concentration driven flow,N = 10. The effect of hydraulic anisotropy on the rate of heat and mass transfer is discussed. It is found that
the rate of heat transfer and the rate of mass transfer are weak functions of the Darcy number for high and low permeability regimes. For a
certain range of the parameters, the rate of heat transfer decreases when the flow penetrates into the porous layer. Hence, there is an optimum
(minimum) value of Nusselt number, which is a function of the anisotropy parameter. Correlation for heat and mass transfer are presented.
 2002 Éditions scientifiques et médicales Elsevier SAS. All rights reserved.
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1. Introduction

Heat and mass transfer in confined porous media with
different configurations have been investigated numerically,
theoretically and experimentally due to its importance in
many engineering and geophysical applications [1,2]. Nat-
ural convection in confined saturated porous media can be
classified in two categories: convection in horizontal and
vertical enclosures.

The subject of this work is on the heat and mass
transfer in a vertical enclosure inserted with isotropic or
anisotropic layers of porous matrix saturated with fluid.
Buoyancy driven flow by heat and species diffusion is
considered. One of the practical motivations of this work
arises from the design of building insulation and insulation
of heat storage systems. It is common to use layered
porous media, with and without an air gap in between
the layers, when designing insulators. Moisture or radon
migration of other undesirable gas into the insulating layers
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is unavoidable under different environmental conditions.
Most insulation materials are anisotropic, such as fiberglass,
wood etc. Therefore, isotropic modeling of this problem
is unrealistic. However, for comparison proposes isotropic
media is also considered here. From an engineering point-
of-view it is more economical to partially fill the gap
of the insulator with porous media. Understanding the
process of heat and mass transfer in such systems is
important in optimizing the insulator geometry. Another
related applications include underground pollution transport
and nuclear disposal management, and, heat and mass
transfer in human and animals skin. A review of the literature
indicated that heat transfer in a vertically layered porous
medium was first considered by Poulikakos and Béjan [3].
Their objective was to model inhomogeneity and channeling
effects on the heat transfer by considering three layers
of porous media with different permeabilities and thermal
diffusivities. Lai and Kulacki [4] extended the work of [3]
by accounting for layers with different thermal conductivity.
The flow within the porous layers was modeled via a
Darcy equation in both cases. Hence, the results do not
account for the continuity of velocity and shear stress at
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Nomenclature

A aspect ratio,=H/L

C dimensional solute concentration . . . . . kg·m−3

D mass diffusivity . . . . . . . . . . . . . . . . . . . . . m2·s−1

Da Darcy number,=KZ/H
2

e dimensionless gap filled with fluid (without
porous material),= e∗/L

g gravitational acceleration . . . . . . . . . . . . . . m·s−2

GrS solutal Grashof number,= gβS�CH
3/ν2

GrT thermal Grashof number,= gβT�TH
3/ν2

H,L height and width of the enclosure . . . . . . . . . . m
K permeability of the porous medium . . . . . . m−2

Kr permeability ratio,=KX/KZ
Le Lewis number,= α/D

N buoyancy ratio,= βS�C/βT�T

Nu average Nusselt number (Eq. (10))
P dimensionless pressure
Pr Prandtl number,= ν/α

Ra∗ Porous thermal Rayleigh number,= Pr GrT Da

�Kr dimensionless tensor of hydraulic anisotropy
(Eq. (6))

Sc effective Schmidt number,= ν/D

Sh Average Sherwood number (Eq. (10))
T dimensional temperature . . . . . . . . . . . . . . . . . . K
U(W) horizontal (vertical) dimensionless component

of velocity,=U∗H/ν(W∗H/ν)
�V dimensionless velocity vector

X,Z dimensionless coordinates,=X∗/H and
=Z∗/H

Greek symbols

α fluid thermal diffusivity . . . . . . . . . . . . . . m2·s−1

βS coefficient of volumetric solutal
expansion . . . . . . . . . . . . . . . . . . . . . . . . . m3·kg−1

βT coefficient of volumetric thermal
expansion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . K−1

ε porosity
φ dimensionless concentration,

= (C − (C2 +C1)/2)/�C
θ dimensionless temperature,

= (T − (T2 + T1)/2)/�T
Λ viscosity ratio,= µeff/µf
λeq equivalent thermal conductivity . . W·m−1·K−1

µ dynamic viscosity of the fluid. . . . . kg·m−1·s−1

ν kinematics viscosity . . . . . . . . . . . . . . . . . m2·s−1

ρ fluid density . . . . . . . . . . . . . . . . . . . . . . . . kg·m−3

Subscripts

eff effective
f fluid
ref reference
S solutal
T thermal

the interface. Other researchers [5–9], investigated natural
convection within vertical cavities divided into a fluid layer
and a porous layer. Only the heat transfer in homogenous and
isotropic porous layer was considered. The main conclusions
of the previous studies are that the intensity of the convection
is much stronger in the fluid region than in the porous
medium region. The degree of fluid penetration into the
porous layer increases with increasing permeability and
thermal Rayleigh number. It is also found that the rate of
heat transfer substantially decreases by attaching a porous
layer to the hot or cold wall of the enclosure. The decrease
in the rate of heat transfer is very sharp for the porous layer
attached to the wall and occupying only 20% of the cavity
volume. Further increase in the thickness of the layer does
not have a significant influence on the rate of heat transfer.
This effect was investigating by Le Breton et al. [10] by
attaching a very thin porous layers on the hot and cold walls
of an air filled square enclosure. Their results indicated that
porous layers having a thickness of the order of the boundary
layer thickness are sufficient for the purpose of effective
insulation. A similar decrease in mass transfer is noticed
by Gobin et al. [11]. They examined the consequence of
thermosolutal convection, in aqueous solution, on heat and
mass transfer in a confined enclosure partially filled with

an isotropic porous medium. Their results are presented for
a buoyancy ratio (solutal to thermal) of 10, aspect ratio
of 2, Lewis number of 100 and for Prandtl number of 10.
The effect of the porous layer thickness, the Darcy number
and the thermal Rayleigh number on the rate of heat and
mass transfer was discussed. They found that a relatively
thin porous layer has a significant effect on the reduction of
heat and mass transfer, as mentioned before. Furthermore,
they noticed that the rate of heat transfer decreases as the
Darcy number decreases and reaches a minimum value
before increasing again. A preliminary explanation of this
phenomena was presented in a subsequent publication [12].

The present work analyses the insulating problem and
extends the results of [11,12], by considering anisotropic
porous layers symmetrically located in an enclosure filled
with air. A more extensive explanation of the physics of the
minimum in the rate of heat transfer as the porous layer
permeability decreases is presented. The effect of attaching
porous layers on both vertical walls of an enclosure filled
with fluid is discussed on the rate of heat and mass transfer is
discussed. A parametric study of the effect of Darcy number,
thickness of the porous layers and permeability ratio on the
rate of heat and mass transfer is presented.
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2. Mathematical formulation

The physical model and coordinate system are shown
in Fig. 1. The geometry under consideration is a two-
dimensional vertical rectangular enclosure of heightH and
width L filled with a binary fluid (moist air) and with
two identical porous medium layers attached to the walls.
The thickness of the fluid layer between the porous layers
is denoted bye∗. The vertical walls of the enclosure are
subjected to temperature and concentrationT1 and C1,
at the left wall, andT2 and C2 at the right wall. Zero
normal temperature and concentration gradients are imposed
at the horizontal surfaces. It is assumed that the flow is
incompressible, steady and laminar and the binary fluid
is Newtonian. The thermophysical properties of the fluid
are assumed to be constant, except for the density in
the buoyancy term, which depends linearly on both the
local temperature and concentration, i.e., the Boussinesq
approximation is assumed to be valid,

ρ(T ,C)= ρ0
[
1− βT (T − T0)− βS(C −C0)

]
(1)

where,

βT = − 1

ρ0

[
∂ρ

∂T

]
C

and βS = 1

ρ0

[
∂ρ

∂C

]
T

Soret and Dufour effects on heat and mass diffusion are
neglected. The solid matrix is supposed to be rigid and in
local thermal equilibrium with the fluid. The permeability of
the porous medium is anisotropic. The principal directions
of permeabilties(Kx,Kz) coincide with the horizontal and
vertical coordinate axes.

The height of the cavity (H ) is taken as a reference
length for the spatial coordinates (X = X∗/H and Z =
Z∗/H ), except for the thickness of pure fluid layer which
is normalized using the width of the enclosure (L). The
reference variables for velocity, pressure, temperature and
species concentration are defined asVref = ν/H , Pref =
ρν2/H 2,�T = T1 − T2 and�C = C1 −C2, respectively.

The Darcy–Brinkman formulation, including the convec-
tive inertia term, is adopted in the analysis and we use
the one domain approach [13]. The dimensionless macro-
scopic conservation equations of mass, momentum, energy
and species can be written as follow:

�∇ · �V = 0 (2)
1

ε2

( �V · �∇) �V

=Λ∇2 �V − 1

Da
�−1
Kr

�V − �∇P + (GrT θ + GrSφ)�k (3)

( �V · �∇)
θ = 1

Pr
Rλ∇2θ (4)

( �V · �∇)
φ = 1

Le Pr
∇2φ (5)

Hydraulic anisotropy of the porous medium is represented
by the dimensionless second order tensor:

�Kr =
[
Kr 0
0 1

]
(6)

where,Kr =KX/KZ .
The dimensionless parameters that characterize the phy-

sics of the problem are the aspect ratio of the cavity
A = H/L, the Prandtl numberPr = ν/α, the Schmidt
number Sc = ν/D, the thermal Grashof numberGrT =
(βT g�TH

3)/ν2 and the solutal Grashof numberGrS =
N GrT = (βSg�CH

3)/ν2. The dimensionless parameters
that characterize the flow in porous media are the Darcy
numberDa = KZ/H

2, the ratio of the effective viscosity
to the fluid viscosityΛ = µeff/µf and the ratio of the fluid
thermal conductivity to the porous media effective conduc-
tivity (Rλ = λ/λeff). The porous thermal Rayleigh number
is defined asRa∗ = GrT Pr Da. Hydraulic anisotropy of the
porous medium is represented by the dimensionless second
order tensor Eq. (6). The analysis is performed for high
porosity material and the porosity of the solid matrix ap-
pears only in the inertia term. In this case, the inertia term
is relatively negligible in porous media. This reason allows
us to set the porosity equal to one. We are considering moist
air and we setΛ andRλ to unity, Pr = 0.71, A = 2 and
GrT = 106 and 107.

The boundary conditions for the governing equations
are the non-slip condition at the impermeable walls of the
enclosure, constant temperature and species concentration
at the vertical walls and zero heat and mass fluxes at the
horizontal walls of the cavity. Hence,

W =U = 0, θ = 0.5, φ = 0.5 atX = 0 (7)

W =U = 0, θ = −0.5, φ = −0.5 atX = 0.5 (8)

W =U = 0,
∂θ

∂Z
= 0,

∂φ

∂Z
= 0 atZ = 0 andZ = 1

(9)

Using the reference diffusive flux (λeff�T )/H for heat
and(D�C)/H for mass, the average rate of heat and mass
transfer across the left wall (atX = 0) are expressed in
dimensionless form by the Nusselt and Sherwood numbers:

Nu =
1∫

0

(
∂θ

∂X

)
X=0

dZ (10a)

Sh =
1∫

0

(
∂φ

∂X

)
X=0

dZ (10b)

3. Numerical method

A finite control volume approach is utilized in this
work. The set of conservation equations (2)–(5) is integrated
over the corresponding control volumes; it leads to a
system of algebraic equations. Continuity of the primitive
variables and fluxes at the interfaces are insured by a
harmonic mean averaging procedure. A classical hybrid
scheme is used to approximate the advection–diffusion
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terms. SIMPLEC algorithm [14] is utilized for the pressure-
velocity coupling in the momentum equation. For highGrT ,
a central difference scheme was also used in approximating
advection–diffusion terms. This was done to validate that
the present hybrid results are free from numerical diffusion
effects. The results were consistent with the prediction of the
hybrid scheme.

The resulting algebraic system being solved by the
ADI technics. The pressure-velocity interlinking is solved
using the SIMPLE algorithm. Numerical experiments were

(a)

(b)

Fig. 1. (a) Schematic diagram of the problem and coordinate system, and
(b) the effect of the meshes refinements onNu (A= 1, Pr = 0.71,N = 0,
Ra∗ = 104).

performed to establish that the number and the distribution
of the control-volumes are sufficient to resolve the thinnest
boundary layer; with more control volumes concentrated
near boundaries and at the interfaces (sinusoidal in each
layer). In order to ensure that the results are grid size
independent, a mesh sensitivity analysis was undertaken and
represented on Fig. 1(b). It is found that the irregular grids
are necessary. Most calculations presented in this paper were
performs using non-uniform 115× 145 grids.

The convergence criteria are based on maximum errors
in global mass, momentum and energy imbalances. Con-
vergence was insured when the maximum errors become
less than 10−6. The code was validated by comparison with
the results of Gobin et al. [11] in a composite fluid-porous
layer. Details of the numerical validation are reported else-
where [15].

4. Results and discussions

It is difficult to address the effects of each controlling pa-
rameters systematically, when the number of the parameters
are quite large. Since, the interest is on the thermal insulation
system, the working fluid is air, and hence the Prandtl num-
ber is fixed to 0.71. In order to cover all the set of the binary
gas and analyze the largest difference in time diffusion, the
Schmidt number is fixed to 7.1 in order to get a Lewis num-
ber of 10. This Le value allow us to amplify the coupling
effect and to cover the order of magnitude of the real Le in
binary gases. The results are presented for the cases of the
thermal and solutal buoyancy forces aiding each other. The
solutal buoyancy force becomes dominant forN > 1 and the
thermal buoyancy force dominates the flow whenN < 1.
For N = 0, the flow is solely driven by the thermal buoy-
ancy force. In the following sections, the numerical results
are discussed first considering isotropic layers. The effects
of anisotropy on the results are considered in the subsequent
section.

4.1. Isotropic layers

Fig. 2 shows the effect of the thickness (isotropic porous
layer Kr = 1) on the rate of heat (Nu) and mass (Sh)
transfers, for a thermally driven flow (N = 0) with GrT =
107 and Da = 10−7. The figure indicates that the major
reduction in the rate of heat and mass transfer takes place
when the porous layers occupies about 40% (20% each
layer) of the enclosure width (e = 0.6). Further increase
in the porous layer thickness does not have a significant
influence on the transport mechanism. This is true for
porous layer thickness equal or greater than the boundary
layer thickness [10]. The results are consistent with results
of [10,11]. The reason behind the reduction in the rate
of heat and mass transfer is that the rate of heat and
mass transfer is mainly controlled by the boundary layer
thickness. The porous layers add hydraulic resistance to the
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Fig. 2. Nusselt and Sherwood numbers as function of porous layer thickness
for thermally driven flow (N = 0), GrT = 107, Da = 10−7 andLe = 10.

boundary layer region. Even though the porous layer may
enhance the conduction mechanism, this enhancement does
not compensate the reduction in the advection mechanism.

Fig. 3, show streamlines, isotherm and iso-concentration
lines forGrT = 106, N = 10, Sc = 7.1 ande = 0.8 and for
three regimes of flow in porous layers, i.e., low, intermediate
and high permeable regimes. For a low permeability porous
layer (Da = 10−7), the flow motion is confined to the fluid
region and the flow in the porous media is negligible (as
seen in Fig. 3(a)). For the same reason the heat and mass
transfer in the porous layer are mainly conductive. For
intermediate permeability, flow penetration into the porous
layers becomes significant (Fig. 3(b)). For high permeability
porous layers (Fig. 3(c)) the flow is stronger and is similar to
the first case (Fig. 3(a)).

Fig. 4(a), (b) and (c) show velocity, temperature and
species concentration profiles at the mid-height of the cavity
for GrT = 106, Sc = 7.1, N = 10 and for differentDa
numbers, respectively. It is evidence (Fig. 4(a)) that the
flow penetration into the porous layer forDa < 10−6 is
not that significant and the heat and mass transfer in
the porous layer are mainly dominated by the conduction
mechanism (Fig. 4(b)). Flow penetration increases asDa
increases (permeability of the medium increases). It is
interesting to note the two peaks in the velocity profiles
for Da = 10−5, one inside the porous layer and another
in the clear fluid region. This can be explained as follows:
when the flow penetrates into the porous layer, part of
the heat advects vertically and the other part conducts
horizontally. The vertical advection mechanism is enhanced

by solutal buoyancy, where the solutal boundary layer is
mainly embedded in the porous layer due to the high
Schmidt number (Fig. 4(c)). The effect of solutal buoyancy
in the fluid region is insignificant as evidence from Fig. 4(c).
The species concentration in the clear fluid region is diluted
compared with the species concentration in the porous
layer region. The horizontally conducted heat warms the
clear fluid and induces the buoyancy in the fluid region.
Accordingly, the flow in the pure fluid region is mainly
thermally driven. As the permeability of the porous layer
increases, the heat transfer is predominatly by advection
and the scale of the horizontally conductive heat decreases.
Hence, the peak value in the velocity profile, in the fluid
region, starts to diminish asDa increases, i.e., more fluid
penetrates into the porous layer.

Temperature profiles at the mid-height of the cavity are
shown in Fig. 4(b). For lowDa (Da < 10−6), the heat
transfer in the porous layer is mainly conductive and the
temperature profile is linear. As the permeability increases,
the flow penetrates into the porous layer, the slope of the
temperature profile decreases and consequently the rate
of heat transfer decreases (Fig. 5). This is evidence in
Fig. 4(b) by comparing slope of the temperature profiles
for Da = 10−6 andDa = 5 × 10−5. As mentioned before,
the decrease in the rate of heat transfer by increasing the
permeability of the porous layers is due to the decrease
in the rate of horizontal conductive heat transfer, which
reduces the intensity of the flow (buoyancy) in the pure
fluid region. Hence, an increase in the advection mechanism
in the porous layer (enhanced by solutal effect) does not
compensate the decrease in the rate of the heat transfer in
the pure fluid region. Therefore, the total rate of heat transfer
decreases.

From the above it becomes clear that the minimum rate
of heat transfer should also be a function of the porous
layer thickness (this issue will be discussed later, Fig. 6(a).
Further increases in the permeability, enhances the advection
in the porous layer and results in increases of the rate of
heat transfer-notice the increase in the temperature profile
slope for Da > 10−4. This case corresponds to one main
circulation in the entire enclosure as shown in Fig. 3(c).
Fig. 4(c), shows concentration profiles for differentDa. The
solutal boundary layer is thinner than the thermal boundary
layer because the Schmidt number is set to be higher than the
Prandtl number (Le = Sc/Pr > 1). It should be mentioned
that the ratio of the thermal to solutal boundary layers is
proportional toLe [16]. No inversion in the slope of species
concentration is evidence in Fig. 4(c).Sh monotonically
increases asDa increases for the intermediate permeability
values, see Fig. 5.

The effects of the porous layer thickness on the rate of
heat and mass transfer are illustrated in Fig. 6(a) and (b),
respectively. For a high permeability porous layer(Da >
10−3), the existence of the porous layers do not influence
the rate of heat and mass transfer significantly, especially
the rate of mass transfer. ForDa < 10−3 the rate of heat
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Fig. 3. Streamlines, Isotherms and Isoconcentration forGrT = 106, N = 10,Le = 10,e= 0.8 and for (a)Da = 10−7, (b) Da = 10−4, and (c)Da = 10−2.
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(a) (b)

Fig. 4. (a)W -velocity, (b) Temperature, and (c) Species concen-
tration profiles at mid height of the enclosure forGrT = 106,
N = 10 and for different Darcy number. (c)

and mass transfer decreases by increasing the porous layer
thickness. The rates of heat and mass transfer decrease
significantly for porous layer thickness from 0 to 0.2 (e from
1 to 0.8). Further increases in the porous layer thickness only
has a mild influence on the reduction of the rates of heat
and mass transfer. As mentioned before, it is interesting to
note that the rate of heat transfer decreases by decreasing
the Darcy number. A further decrease inDa then increases
the rate of heat transfer. This is clear fore = 0.8. This issue
is clearly illustrated in Fig. 5.

Based on the above argument, a minimum Nusselt num-
ber exists in double diffusive phenomena due to the existence
of double boundary layers (solutal and thermal). The mini-
mum inNu (Sh) is possible if the solutal (thermal) boundary
layer is mainly embedded in the porous layer, while ther-
mal (solutal) boundary layer is extended into the pure fluid
region. For thermal (or solutally) driven flow it is possible
to obtain two peaks in the velocity profiles (Fig. 7(a)) due to
flow penetration into the porous layer. However, no inversion
in the evolution of the thermal boundary layer is evidence in
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Fig. 5. Dependence ofNu andSh numbers on theDa for N = 10 andN = 0
(thermally driven).

Fig. 7(b), i.e., for thermally driven flow no minimum in the
rate of heat transfer can be expected, Fig. 5.

4.2. Effect of anisotropy

In several applications, the porous material is anisotropic,
such as fiberglass, layered insulator, etc. In general, anisotro-
pic materials have anisotropy in permeability and in thermal,
species diffusivities (see for instance [17]). In [17] the effect
of anisotropy in the permeability (hydrodynamic anisotropy)
is considered.

ChangingKr , i.e., the ratio ofKX to KZ , addresses the
effect of hydraulic anisotropy. It should be mention that
whenKr < 1 the flow channels in the vertical direction
and asKr > 1 the flow channels in the horizontal direction.
A new parameter(DaKr) arises in the momentum equation
in the anisotropic porous media, hence the transport phe-
nomena in the anisotropic media is more complicated than
in the isotropic media case.

Fig. 8(a) and (b) show the effect of Darcy number on
the rate of heat transfer and mass transfer, respectively (for
N = 10). It is evidence that forDa> 0.01 (highly permeable
region) and forDa < 5 × 10−7 (low permeability region)
the effect of anisotropy on the rate of heat and mass transfer
is negligible. In fact forDa < 10−6, the porous medium is
almost impermeable and heat and mass transfer are diffusive.
For Da > 10−2 (high permeable media), the existence of
porous layers does not influence the flow significantly.

The rate of heat transfer (Fig. 8(a)) starts to decrease by
increasingDa above 10−6 until it reaches a minimum value
and then the rate of heat transfer increases by increasingDa.

(a)

(b)

Fig. 6. (a) Nusselt number, and (b) Sherwood number as function of porous
layer thickness for different Darcy numbers and forGrT = 106, N = 10
andLe = 10.

The value ofDa at which the minimumNu value takes place
depends onKr . AsKr decreasesDa increases for minimum
rate of heat transfer. This is true forKr < 1. ForKr > 1,
the optimalDa is almost constant (Da = 8× 10−6). ForKr

greater than unity, the flow is only due to vertical porous
resistance (vertical channels).
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(a)

(b)

Fig. 7. (a)W -velocity, and (b) temperature profiles at mid height of the
enclosure for thermal driven flow (N = 0), GrT = 107 and for different
Darcy number.

The principle of minimum rate of heat transfer can be
explained on the same bases as discussed for isotropic
media. In other words, flow penetration into the porous layer
induces heat transfer by the advection mechanism, which
is enhanced by solutal buoyancy and consequently reduces
the flow intensity in the clear fluid region. The rate of mass

(a)

(b)

Fig. 8. The effects of permeability ratio on (a) the Nusselt number, and (b)
the Sherwood number as a function of Darcy number for fixed porous layer
thickness.

transfer is not a strong function of the Darcy number and
permeability ratios for both the high permeability and the
low permeability range ofDa (Da> 10−2 andDa< 10−6).
For 10−6 < Da < 10−2 (intermediate permeability range)
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the rate of mass transfer decreases asKr decreases for the
same Darcy number and forKr less than unity. In fact, it is
possible to obtain optimal (minimal) value for mass transfer,
if the thermal boundary layer is embedded in the porous
layer and solutal boundary layer extended into the pure fluid
region.

Fig. 9(a) and (b) show the effect of the permeability
ratio on the rate of heat and mass transfer respectively,
for different porous layer thicknesses. The figure is for
Da = 10−4, GrT = 106, N = 10 andSc = 7.1. The effect
of anisotropy is not that significant for high and low
permeability ratios. Therefore for range 10−4 < Kr < 1,
for a fixed porous layer, increasing the permeability ratio
increases the rate of heat and mass transfer. The rate of
heat and mass transfer is mainly controlled by the diffusion
mechanism for low permeability ratios. The convection
(advection) mechanism increases as the hydraulic anisotropy
increases, for high permeability ratios the convection will be
the main mechanism of the transport. This is consistent with
result of [17]. Their results show that the thermal boundary
layer thickness decreases as the permeability ratio increases,
i.e., the rate of heat transfer increases with an increase in the
permeability ratio. Also, it is evidenced from Fig. 9 that for
fixed permeability ratio, the rate of heat and mass transfer
decreases as the thickness of the porous layer increases as
in the case for isotropic porous layers. The minimalNu is
deeper for porous layer thickness of 0.1 (e = 0.8) and the
minimal value inNu diminishes as porous layers become
thicker. For thick porous layer, both thermal and solutal
boundary layer embedded in the porous layers and the rate
of heat and mass transfer is enhanced by the advection
mechanism.

5. Conclusions

Double diffusive, natural convection in a closed, verti-
cal enclosure fitted with two symmetrical porous layers con-
fining a fluid layer is analyzed numerically. The effect of
anisotropy on the rate of heat and mass transfer is discussed.
A porous layer can be classified into three: low permeabil-
ity, intermediate and high permeability. The heat and mass
transfer are conduction dominated for low permeable porous
layer and flow penetration into porous layer is insignificant.
The effect of high permeable porous layer on the rate of
transport of momentum, heat and mass is minimal. For in-
termediate permeable region, there is a possibility to obtain
a minimum value in the Nusselt number or Sherwood num-
ber.

The paper clarifies the physics behind the existence of
a minimalNu, which have been noticed by others and also
observed in the present. The optimal (minimum)Nu is a
double-diffusivecontrolled phenomena. The minimum inNu
takes place if the solutal boundary layer is contained in the
porous layer while the thermal boundary layer extends into

(a)

(b)

Fig. 9. The effects of porous layer thickness on (a) the Nusselt number, and
(b) the Sherwood number as a function of permeability ratio for given Darcy
number.

the clear fluid region. Hence, the occurrence of minimalNu
is a function of the porous layer thickness.

Nusselt and Sherwood numbers are not functions of
permeability ratio for high and low permeability ratio, i.e.,
for the range of 10−4 >Kr > 1. The rate of heat and mass
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transfer increases as the permeability ratio is varied in the
range 10−4<Kr < 1. The Darcy number at which minimal
Nusselt number take places increases as the permeability
ratio decreases forKr less than unity. The Darcy number
at which minimalNu takes place is not a function ofKr for
Kr greater than unity.
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